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1 Introduction

The role of causality in SEM research is widely perceived to be, on the one hand, of pivotal
methodological importance and, on the other hand, confusing, enigmatic, and controversial.
The confusion is vividly portrayed, for example, in the influential report of Wilkinson and
Task Force (1999), on “Statistical Methods in Psychology Journals: Guidelines and Expla-
nations.” In discussing SEM, the report starts with the usual warning: “Correlation does
not prove causation,” but then ends with a startling conclusion: “The use of complicated
causal-modeling software [read SEM] rarely yields any results that have any interpretation
as causal effects.” The implication being that the entire enterprise of causal modeling, from
Sewell Wright (1921) to Blalock (1964) and Duncan (1975), the entire literature in economet-
ric research, including modern advances in graphical and nonparametric structural models,
has been misguided, for researchers have been chasing parameters that have no causal inter-
pretation.

The motives for such overstatements notwithstanding, readers may rightly ask: “If SEM
methods do not ‘prove’ causation, how can they yield results that have causal interpreta-
tion?” Put another way, if the structural coefficients that SEM researchers labor to estimate
can legitimately be interpreted as causal effects, then, unless these parameters are grossly
misestimated, why deny SEM researchers the honor of “establishing causation” or at least
of deriving some useful claims about causation?

The answer is that a huge logical gap exists between “establishing causation,” which
requires careful manipulative experiments, and “interpreting parameters as causal effects,”
which may be based on firm scientific knowledge or on previously conducted experiments,
perhaps by other researchers. One can legitimately be in possession of a parameter that
stands for a causal effect and still be unable, using statistical means alone, to determine the
magnitude of that parameter given nonexperimental data. As a matter of fact, we know that
no such statistical means exists; that is, causal effects in observational studies can only be
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substantiated from a combination of data and untested, theoretical assumptions; not from the
data alone. Thus, if reliance on theoretical assumptions disqualifies SEM’s parameters from
having an interpretation as causal effects, no method whatsoever can endow any parameter
with such interpretation, and causal vocabulary should be purged from scientific discourse –
an unthinkable restriction.

But then, if the parameters estimated by SEM methods are legitimate carriers of causal
claims, and if those claims cannot be proven valid by the data alone, what is the empirical
content of those claims? What good are the numerical values of the parameters? Can they
inform prediction, decision, or scientific understanding? Are they not merely fiction of one’s
fancy, comparable say to horoscopic speculations?

The aim of this chapter is to lay a coherent logical framework for answering these founda-
tional questions. Following a brief historical account of how the causal interpretation of SEM
was obscured (Section 2), the chapter explicates the empirical content of SEM’s claims (Sec-
tion 3), and describe the tools needed for solving most (if not all) problems involving causal
relationships (Sections 4 and 5). The tools are based on nonparametric structural equation
models – a natural generalization of those used by econometricians and social scientists in the
1950-60s, that serve as an Archimedean point to liberate SEM from its parametric blinders
and elucidate its causal content.

In particular the chapter introduces:

1. Tools of reading and explicating the causal assumptions embodied in SEM models as
well as the set of assumptions that support each individual causal claim.

2. Methods of identifying the testable implications (if any) of the assumptions in (1),
and ways of testing, not the model in its entirety, but the testable implications of the
assumptions behind each individual causal claim.

3. Methods of deciding, prior to taking any data, what measurements ought to be taken,
whether one set of measurements is as good as another, and which measurements tend
to bias our estimates of the target quantities.

4. Methods for devising critical statistical tests by which two competing theories can be
distinguished.

5. Methods of deciding mathematically if the causal relationships are estimable from the
data and, if not, what additional assumptions, measurements, or experiments would
render them estimable.

6. Methods of recognizing and generating equivalent models that solidify, extend, and
amend the heuristic methods of Stelzl (1986) and Lee and Hershberger (1990).

7. Generalization of SEM to categorical data and nonlinear interactions, including a so-
lution to the so-called “mediation problem,” (Baron and Kenny, 1986; MacKinnon,
2008).
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2 SEM and Causality: A Brief History of Unhappy

Encounters

The founding fathers of SEM, from Sewall Wright (1921) and the early econometricians
(Haavelmo, 1943; Koopmans, 1953), to Blalock (1964) and Duncan (1975) have all considered
SEM a mathematical tool for drawing causal conclusions from a combination of observational
data and theoretical assumptions. They were explicit about the importance of the latter,
but also adamant about the unambiguous causal reading of the model parameters, once the
assumptions are substantiated.

In time, however, the causal reading of structural equation models and the theoretical
basis on which it rests were suspected of “ad hockery,” even to seasoned workers in the field.
This occurred partially due to the revolution in computer power, which made workers “lose
control of their ability to see the relationship between theory and evidence” (Sørensen, 1998,
p. 241), and partly due to a steady erosion of the basic understanding of SEMs, which Pearl
(2009, p. 138) attributes to notational shortsightedness (i.e., the failure of the equality sign
to distinguish structural from regressional equations).

In his critical paper on SEM, Freedman (1987, p. 114) challenged the causal interpreta-
tion of SEM as “self-contradictory,” and none of the 11 discussants of his paper were able to
detect his error and to articulate the correct, noncontradictory interpretation of the example
presented by Freedman. Instead, SEM researchers appeared willing to accept contradic-
tion as a fundamental flaw in causal thinking, which must always give way to statistical
correctness. In his highly cited commentary on SEM, Chin (1998) surrenders to the crit-
ics: “Researchers interested in suggesting causality in their SEM models should consult the
critical writing of Cliff (1983), Freedman (1987), and Baumrind (1993).”

This, together with the steady influx of statisticians into the field, has left SEM re-
searchers in a quandary about the meaning of the SEM parameters, and has caused some to
avoid causal vocabulary altogether and to regard SEM as an encoding of parametric family
of density functions, void of causal interpretation. Muthén (1987), for example, wrote “It
would be very healthy if more researchers abandoned thinking of and using terms such as
cause and effect.” Many SEM textbooks have subsequently considered the term “causal
modeling” to be an outdated misnomer (e.g., Kelloway, 1998, p. 8), giving clear preference
to causality-free nomenclature such as “covariance structure,” “regression analysis,” or “si-
multaneous equations.” A popular 21st century textbook reaffirms: “Another term that you
may have heard is causal modeling, which is used mainly in association with the techniques
of path analysis. This expression may be somewhat dated, however, as it seems to appear
less often in the literature nowadays” (Kline, 2011, p. 8).

Relentless assaults from the potential-outcome paradigm (Rubin, 1974) have further
eroded confidence in SEM’s adequacy to serve as a language for causation. Sobel (1996),
for example, states that the interpretation of the parameters of SEM model as effects “do
not generally hold, even if the model is correctly specified and a causal theory is given.”
Comparing structural equation models to the potential-outcome framework, Sobel (2008)
asserts that “In general (even in randomized studies), the structural and causal parameters
are not equal, implying that the structural parameters should not be interpreted as effect.”
Remarkably, formal analysis proves the exact opposite: structural and causal parameters are
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one and the same thing, and they should always be interpreted as effects (Galles and Pearl,
1998; see Section 4).

Paul Holland, another advocate of the potential-outcome framework, unravels the root
of the confusion: “I am speaking, of course, about the equation: {y = a + bx + ε}. What
does it mean? The only meaning I have ever determined for such an equation is that it is a
shorthand way of describing the conditional distribution of {y} given {x}” (Holland, 1995, p.
54). We will see that the structural interpretation of the equation above has in fact nothing
to do with the conditional distribution of {y} given {x}; rather, it conveys counterfactual
information that is orthogonal to the statistical properties of {x} and {y} (Section 4.4).

We will further see (Section 4.5) that the SEM language in its nonparametric form offers
a mathematically equivalent alternative to the potential-outcome framework that Holland
and Sobel advocate for causal inference – a theorem in one is a theorem in another. SEM
provides in fact the formal mathematical basis from which the potential-outcome notation
draws its legitimacy. This, together with its friendly conceptual appeal and effective mathe-
matical machinery explains why SEM retains its status as the prime language for causal and
counterfactual analysis.1 These capabilities are rarely emphasized in standard SEM texts,
where they have been kept dormant in the thick labyrinths of software packages, goodness-
of-fit measures, linear regression, MLE estimates, and other details of parametric modeling.
The nonparametric perspective unveils these potentials and avails them for both linear and
nonlinear analyses.

3 The Logic of SEM

Trimmed and compromised by decades of statistical assaults, textbook descriptions of the
aims and claims of SEM grossly understate the power of the methodology. Byrne (2006)
for example, describes SEM as “as statistical methodology that takes a confirmatory (i.e.,
hypothesis-testing) approach to the analysis of a structural theory bearing on some phe-
nomenon. . . The hypothesized model can then be tested statistically in a simultaneous
analysis of the entire system of variables to determine the extent to which it is consistent with
the data. If goodness-of-fit is adequate, the model argues for the plausibility of postulated
relations among variables; if it is inadequate, the tenability of such relations is rejected.”

Taken literally, this confirmatory approach encounters some basic logical difficulties. Con-
sider, for example, the hypothesized model:

M = “Cinderella is a terrorist”

Although, goodness-of-fit tests with any data would fail to uncover inconsistency in this
hypothesized model, we would find it odd to argue for its plausibility. Attempts to repair
the argument by insisting that M be falsifiable and invoke only measured variables does not
remedy the problem. Choosing

M = “Barometer readings cause rain and the average age in Los Angeles is higher than 3”

1A more comprehensive account of the history of SEM and its causal interpretations is given in Pearl
(1998). Pearl (2009, pp. 368–74) devotes a section of his book Causality to advise SEM students on the
causal reading of SEM and how do defend it against the skeptics.
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will encounter a similar objection; although M is now falsifiable, and all its variables mea-
sured, its success in fitting the data tells us nothing about the causal relations between rain
and barometers.

The only way to avoid this paradox is to insist that the tested component of M (that the
average age is higher than 3) be logically related to its claims (that barometers cause rain),
but this stands contrary to the philosophy of confirmatory analysis, according to which the
hypothesized model is submitted to a test “of the entire system of variables,” irrespective of
whether the tested part bears any relationship to the resulting claims.

This simple, albeit contrived example, uncovers a basic logical flaw in the conservative
confirmatory approach, and underscores the need to spell out the empirical content of the
assumptions behind the hypothesized model, the claims inferred by the model, and the degree
to which data corroborate the latter.

The interpretation of SEM methodology that emerges from the nonparametric perspective
(Pearl, 2009, pp. 159–63, 368–74), makes these specifications explicit and is, therefore, free
of such flaws. According to this interpretation, SEM is an inference method that takes three
inputs and produces three outputs. The inputs are:

I-1. A set A of qualitative causal assumptions which the investigator is prepared to defend
on scientific grounds, and a model MA that encodes these assumptions. (Typically, MA

takes the form of a path diagram or a set of structural equations with free parameters.
A typical assumption is that certain omitted factors, represented by error terms, are
uncorrelated with some variables or among themselves, or that no direct effect exists
between a pair of variables.)

I-2. A set Q of queries concerning causal and counterfactual relationships among variables
of interest. Traditionally, Q concerned the magnitudes of structural coefficient but, in
general models, Q will address causal relations more directly, e.g.,

Q1 : What is the effect of treatment X on outcome Y ?

Q2 : Is this employer guilty of gender discrimination?

Theoretically, each query Qi ∈ Q should be computable from a fully specified model
M in which all functional relationships are given. Non-computable queries are inad-
missible.

I-3. A set D of experimental or non-experimental data, governed by a joint probability
distribution presumably generated by a process consistent with A.

The outputs are

O-1. A set A∗ of statements which are the logical implications of A, separate from the data
at hand. For example, that X has no effect on Y if we hold Z constant, or that Z is
an instrument relative to {X, Y }.

O-2. A set C of data-based claims concerning the magnitudes or likelihoods of the target
queries in Q, each conditional on A. C may contain, for example, the estimated
mean and variance of a given structural parameter, or the expected effect of a given
intervention. Auxiliary to C , SEM also generates an estimand Qi(P ) for each query in
Q, or a determination that Qi is not identifiable from P (Definition 1.)
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O-3. A list T of testable statistical implications of A, and the degree g(Ti), Ti ∈ T , to which
the data agrees with each of those implications. A typical implication would be the
vanishing of a specific partial correlation; such constraints can be read from the model
MA and confirmed or disconfirmed quantitatively by the data (Definition 3).

The structure of this inferential exercise is shown schematically in Figure 1.

Q  D, A(       )

Conditional claims Model testing

Data(   )D

g  T(   )

Q −Queries of interest

Identified estimands(   ) −Q  P Testable implicationsT  MA(      ) −

LogicalA* − 
implications of A

CAUSALA − 
ASSUMPTIONS

M(      )A

CAUSAL
MODEL

Estimates of     (   )Q − PQ

Statistical inference

Causal inference

Goodness of fit

Figure 1: SEM methodology depicted as the an inference engine converting assumptions
(A), queries (Q), and data (D) into logical implications (A∗) Conditional claims (C) and
data-fitness indices (g(T )).

Several observations are worth noting before illustrating these inferences by examples.
First, SEM is not a traditional statistical methodology, typified by hypothesis testing or
estimation, because neither claims nor assumptions are expressed in terms of probability
functions of realizable variables (Pearl, 2009).

Second, all claims produced by an SEM study are conditional on the validity of A, and
should be reported in conditional format: “If A then Ci” for any claim Ci ∈ C . Such
claims, despite their provisional character, are significantly more assertive than their meek,
confirmatory predecessors. They assert that anyone willing to accept A, must also accept Ci

out of logical necessity. Moreover, no other method can do better, that is, if SEM analysis
finds that a set A of assumptions is necessary for inferring a claim Ci, no other methodology
can infer Ci with a weaker set of assumptions.2

Thirdly, passing a goodness-of-fit test is not a prerequisite for the validity of the condi-
tional claim “If A then Ci,” nor for the validity of Ci. While it is important to know if any

2This is important to emphasize in view of often heard critics that, in SEM, one must start with a model
in which all causal relations are presumed known, at least qualitatively. Other methods must rest on the
same knowledge, though some tend to hide the assumptions under catch-all terms such as “ignorability” or
“nonconfoundedness.”
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assumptions in A are inconsistent with the data, MA may not have any testable implications
whatsoever. In such a case, the assertion “If A then Ci” may still be extremely informative
in a decision making context, since each Ci conveys quantitative information extracted from
the data rather then qualitative assumptions A with which the study commences. Moreover,
even if A turns out inconsistent with D, the inconsistencies may be entirely due to portions
of the model which have nothing to do with the derivation of Ci. It is therefore important to
identify which statistical implication of (A) is responsible for the inconsistency; global tests
for goodness-of-fit hide this information (Pearl, 2009, 2004, pp. 144-45).

Finally, and this has been realized by SEM researchers in the late 1980’s, there is nothing
in SEM’s methodology to protect C from the inevitability of contradictory equivalent models,
namely, models that satisfy all the testable implications of MA and still advertise claims
that contradict C . Modern developments in graphical modeling have devised visual and
algorithmic tools for detecting, displaying, and enumerating equivalent models. Researchers
should keep in mind therefore that only a tiny portion of the assumptions behind each SEM
study lends itself to scrutiny by the data; the bulk of it must remain untestable, at the mercy
of scientific judgment.

4 The Causal Reading of Structural Equation Models

4.1 The assumptions and their representation

In this section we will illustrate the inferences outlined in Figure 1 using simple structural
models consisting of linear equations and their nonparametric counterparts, encoded via
diagrams. Consider the linear structural equations

y = βx + uY , x = uX (1)

where x stands for the level (or severity) of a disease, y stands for the level (or severity)
of a symptom, and uY stands for all factors, other than the disease in question, that could
possibly affect Y when X is held constant. In interpreting this equation we should think
of a physical process whereby nature examines the values of all variables in the domain
and, accordingly, assigns to variable Y the value y = βx + uY . Similarly, to “explain” the
occurrence of disease X, we write x = uX, where UX stands for all factors affecting X, which
may in general include factors in UY .

To express the directionality of the underlying process, we should either replace the
equality sign with an assignment symbol :=, or augment the equation with a “path diagram,”
in which arrows are drawn from causes to their effects, as in Figure 2. The absence of an
arrow makes the empirical claim that Nature assigns values to one variable irrespective
of another. In our example, the diagram encodes the possible existence of (direct) causal
influence of X on Y , and the absence of causal influence of Y on X, while the equations
encode the quantitative relationships among the variables involved, to be determined from
the data. The “path coefficient,” β, quantifies the (direct) causal effect of X on Y . Once we
commit to a particular numerical value of β, the equation claims that a unit increase for X
would result in β units increase of Y regardless of the values taken by other variables in the
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model, regardless of the statistics of UX and UY , and regardless of whether the increase in
X originates from external manipulations or variations in UX .

The variables UX and UY are called “exogenous”; they represent observed or unobserved
background factors that the modeler decides to keep unexplained—that is, factors that in-
fluence but are not influenced by the other variables (called “endogenous”) in the model.
Unobserved exogenous variables in structural equations, sometimes called “disturbances” or
“errors,” differ fundamentally from residual terms in regression equations. The latters, usu-
ally denoted by letters εX, εY , are artifacts of analysis which, by definition, are uncorrelated
with the regressors. The formers are shaped by physical reality (e.g., genetic factors, socioe-
conomic conditions), not by analysis; they are treated as any other variable, though we often
cannot measure their values precisely and must resign ourselves to merely acknowledging
their existence and assessing qualitatively how they relate to other variables in the system.

If correlation is presumed possible, it is customary to connect the two variables, UY and
UX , by a dashed double arrow, as shown in Figure 2(b). By allowing correlations among
omitted factors, we encode in effect the presence of latent variables affecting both X and Y ,
as shown explicitly in Figure 2(c), which is the standard representation in the SEM literature
(e.g., Bollen, 1989). If, however, our attention focuses on causal relations among observed
rather than latent variables, there is no reason to distinguish between correlated errors and
interrelated latent variables; it is only the distinction between correlated and uncorrelated
errors (e.g., between Figure 2(a) and (b)) that need to be made.3 Moreover, when the error
terms are uncorrelated, it is often more convenient to eliminate them altogether from the
diagram (as in Figure 7, Section 5), with the understanding that every variable, X, is subject
to the influence of an independent disturbance UX.

Y

X
X Y X Y

X Y

x = u

βy =   x + u

βX Y

U U

(a)

U U

Y

(b)

βX

U U

YX

(c)

β

Figure 2: A simple structural equation model, and its associated diagrams, showing (a)
independent unobserved exogenous variables (connected by dashed arrows), (b) dependent
exogenous variables, and (c) an equivalent, more traditional notation, in which latent vari-
ables are enclosed in ovals.

In reading path diagrams, it is common to use kinship relations such as parent, child,
ancestor, and descendent, the interpretation of which is usually self-evident. For example,
the arrow in X → Y designates X as a parent of Y and Y as a child of X. A “path” is any
consecutive sequence of edges, solid or dashed. For example, there are two paths between X
and Y in Figure 2(b), one consisting of the direct arrow X → Y while the other tracing the
nodes X, UX , UY , and Y .

3Causal relationships among latent variables are assessed by treating their indicators as noisy measure-
ment of the formers (Bollen, 1989; Pearl, 2010c; Cai and Kuroki, 2008).

8



In path diagrams, causal assumptions are encoded not in the links but, rather, in the
missing links. An arrow merely indicates the possibility of causal connection, the strength
of which remains to be determined (from data); a missing arrow represents a claim of zero
influence, while a missing double arrow represents a claim of zero covariance. Both as-
sumptions are causal, not statistical, since none can be determined from the joint density of
the observed variables, X and Y ; though both can be tested in experimental settings (e.g.,
randomized trials).

4.2 Causal Assumptions in Nonparametric Models

To extend the capabilities of SEM methods to models involving discrete variables, nonlinear
dependencies, and heterogeneous effect modifications, we need to detach the notion of “ef-
fect” from its algebraic representation as a coefficient in an equation, and redefine “effect”
as a general capacity to transmit changes among variables. The central idea is to exploit
the invariant characteristics of structural equations without committing to a specific func-
tional form. For example, the nonparametric interpretation of the diagram in Figure 3(a)
corresponds to a set of three unknown functions, each corresponding to one of the observed

Z X YZ X Y
U U U

Z X

0
x

(b)

Y

U U U

(a)

X YZ

Figure 3: The diagrams associated with (a) the structural model of equation (2) and (b) the
modified model of equation (3), representing the intervention do(X = x0).

variables:

z = fZ(uZ)

x = fX(z, uX) (2)

y = fY (x, uY ),

where in this particular example UZ , UX and UY are assumed to be jointly independent but
otherwise arbitrarily distributed. Each of these functions represents a causal process (or
mechanism) that determines the value of the left variable (output) from the values on the
right variables (inputs). The absence of a variable from the right-hand side of an equation
encodes the assumption that nature ignores that variable in the process of determining the
value of the output variable. For example, the absence of variable Z from the arguments
of fY conveys the empirical claim that variations in Z will leave Y unchanged, as long as
variables UY and X remain constant.

4.3 Representing Interventions and Causal effects

Remarkably, this feature of invariance permits us to derive powerful claims about causal
effects and counterfactuals, despite our ignorance of functional and distributional forms. This
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is done through a mathematical operator called do(x), which simulates physical interventions
by deleting certain functions from the model, replacing them with a constant X = x, while
keeping the rest of the model unchanged. For example, to emulate an intervention do(x0)
that holds X constant (at X = x0) in model M of Figure 3(a), we replace the equation for
x in equation (2) with x = x0, and obtain a new model, Mx0

,

z = fZ(uZ)

x = x0 (3)

y = fY (x, uY ),

the graphical description of which is shown in Figure 3(b).
The joint distribution associated with the modified model, denoted P (z, y|do(x0)) de-

scribes the post-intervention distribution of variables Y and Z (also called “controlled”
or “experimental” distribution), to be distinguished from the preintervention distribution,
P (x, y, z), associated with the original model of equation (2). For example, if X represents a
treatment variable, Y a response variable, and Z some covariate that affects the amount of
treatment received, then the distribution P (z, y|do(x0)) gives the proportion of individuals
that would attain response level Y = y and covariate level Z = z under the hypothetical
situation in which treatment X = x0 is administered uniformly to the population.

In general, we can formally define the postintervention distribution by the equation

PM (y|do(x)) = PMx
(y) (4)

In words: In the framework of model M , the postintervention distribution of outcome Y is
defined as the probability that model Mx assigns to each outcome level Y = y. From this
distribution, which is readily computed from any fully specified model M , we are able to
assess treatment efficacy by comparing aspects of this distribution at different levels of x0.
However, the central question in the analysis of causal effects is the question of identification
in partially specified models: Given assumptions set A (as embodied in the model), can the
controlled (postintervention) distribution, P (Y = y|do(x)), be estimated from data governed
by the preintervention distribution P (z, x, y)?

In linear parametric settings, the question of identification reduces to asking whether
some model parameter, β, has a unique solution in terms of the parameters of P (say the
population covariance matrix). In the nonparametric formulation, the notion of “has a
unique solution” does not directly apply since quantities such as Q(M) = P (y|do(x)) have
no parametric signature and are defined procedurally by simulating an intervention in a
causal model M , as in equation (3). The following definition captures the requirement that
Q be estimable from the data:

Definition 1 (identifiability ) (Pearl, 2000, p. 77)
A quantity Q(M) is identifiable, given a set of assumptions A, if for any two models M1 and
M2 that satisfy A, we have

P (M1) = P (M2)⇒ Q(M1) = Q(M2) (5)
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In words, the functional details of M1 and M2 do not matter; what matters is that the
assumptions in A (e.g., those encoded in the diagram) would constrain the variability of those
details in such a way that equality of P ’s would entail equality of Q’s. When this happens,
Q depends on P only and should therefore be expressible in terms of the parameters of P .
Section 5.3 will exemplify and operationalize this notion.

4.4 Counterfactual Analysis in Structural Models

Not all questions of causal character can be encoded in P (y|do(x)) type expressions, thus
implying that not all causal questions can be answered from experimental studies. For
example, retrospective questions regarding causes of a given effect (e.g., what fraction of
death cases are due to a specific treatment) cannot be answered from experimental studies,
and naturally this kind of question cannot be expressed in P (y|do(x)) notation.4

To answer such questions, a probabilistic analysis of counterfactuals is required, one
dedicated to the relation “Y would be y had X been x in situation U = u,” denoted Yx(u) =
y. Remarkably, unknown to most economists and philosophers, structural equation models
provide the formal interpretation and symbolic machinery for analyzing such counterfactual
relationships.5

The key idea is to interpret the phrase “had X been x” as an instruction to make a
minimal modification in the current model, which may have assigned X a different value,
say X = x′, so as to ensure the specified condition X = x. Such a minimal modification
amounts to replacing the equation for X by a constant x, as we have done in equation
(3). This replacement permits the constant x to differ from the actual value of X (namely
fX(z, uX)) without rendering the system of equations inconsistent, thus yielding a formal
interpretation of counterfactuals in multistage models, where the dependent variable in one
equation may be an independent variable in another.

Definition 2 (unit-level counterfactuals) (Pearl, 2000, p. 98)
Let M be a fully specified structural model and Mx a modified version of M , with the equa-
tion(s) of X replaced by X = x. Denote the solution for Y in the equations of Mx by the
symbol YMx

(u). The counterfactual Yx(u) (Read: “The value of Y in unit u, had X been x”)
is given by

Yx(u)
∆
= YMx

(u). (6)

In words: The counterfactual Yx(u) in model M is defined as the solution for Y in the
“surgically modified” submodel Mx.

4The reason for this fundamental limitation is that no death case can be tested twice, with and without
treatment. For example, if we measure equal proportions of deaths in the treatment and control groups, we
cannot tell how many death cases are actually attributable to the treatment itself; it is quite possible that
many of those who died under treatment would be alive if untreated and, simultaneously, many of those who
survived with treatment would have died if not treated.

5Connections between structural equations and a restricted class of counterfactuals were first recognized
by Simon and Rescher (1966). These were later generalized by Balke and Pearl (1995), using surgeries
(equation 6), thus permitting endogenous variables to serve as counterfactual antecedents. The “surgery
definition” was used in Pearl (2000, p. 417) and defended in Pearl (2009, pp. 362–82, 374–79).
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We see that every structural equation, say y = a + bx + uY , carries counterfactual
information, Yxz(u) = a + bx + uY , where Z is any set of variables in the model that do not
appear on the right hand side of the equation. Naturally, when U is a random variable, Yx

will be a random variable as well, the distribution of which is dictated by both P (u) and
the model Mx. It can be shown (Pearl, 2009, Ch. 7) that equation (6) permits us to define
joint distributions of counterfactual variables and to detect conditional independencies of
counterfactuals directly from the path diagram.

4.4.1 Reading counterfactuals – An example

This capacity of structural equations to encode and deliver counterfactual information, at
both the unit and population levels, is hardly known among SEM researchers, and should
receive much greater emphasis in education and the mainstream literature. It is an essential
tool to ward off critiques who view counterfactuals as an exclusive property of the potential-
outcome framework (Holland, 1988; Wilkinson et al., 1999; Rubin, 2004; Sobel, 2008; Imbens,
2010). This capacity can be demonstrated by a simple example, using a 3-variable linear
model; the same one used by Holland (1988) and Sobel (2008) to “prove” that structural
models do not have causal or counterfactual content.

Consider the model in Figure 4 where X stands for the level of assistance (or “treatment”)
given to a student, Z stands for the amount of time the student spends studying, and Y , the
outcome, stands for the student’s performance on an exam. Starting at a unit level analysis,
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X Y = 0.7α

ε1 ε3
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= 0.7α
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γ
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(a)
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= 1.0

= 0.5X Y

= 0.75 = 0.75

= 0.5

(c)

= 0.5

Z

= 0.75

= 2.0

X Y= 1.5 = 1.9

Figure 4: Structural models used for answering a counterfactual question about an individual
u = (ε1, ε2, ε3). (a) the generic model (all intercepts are assumed zero), (b) the u-specific
model. (c) the modified model necessary to accommodate the antecedent Z = 2 of the
counterfactual question Q1.

let us consider a student named Joe, for whom we measure X = 0.5, Z = 1, Y = 1.5, and
about whom we ask a counterfactual question:

Q1: What would Joe’s score be had he doubled his study time?

Using our subscript notation, this question amounts to evaluating YZ=2(u), with u standing
for the distinctive characteristics of Joe, namely, u = (ε1, ε2, ε3), as inferred from the observed
data {X = 0.5, Z = 1, Y = 1.5}.

The answer to this question is obtained in three steps.
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1. Use the data to compute the exogenous factors ε1, ε2, ε3 (These are the invariant charac-
teristics of unit u, and do not change by interventions or counterfactual hypothesizing.)
In our model, we get (Figure 4(b)):

ε1 = 0.5

ε2 = 1− 0.5× 0.5 = 0.75,

ε3 = 1.5− 0.5× 0.7− 1× 0.4 = 0.75

2. Modify the model, to form MZ=2, in which Z is set to 2 and all arrows to Z are removed
(Figure 4(c)).

3. Compute the value of Y in the mutilated model formed in step 2, giving:

YZ=2 = 0.5× 0.7 + 2.0× 0.4 + 0.75 = 1.90

This example illustrates the need to modify the original model (Figure 4(a)), in which
the combination (X = 1, ε2 = 0.75, Z = 2.0) constitutes a contradiction (see footnote 5).
This is precisely the contradiction that Freedman (1987) could not reconcile in his critic of
SEM.

Let us now ask another hypothetical question about Joe.

Q2: What would Joe’s score be, had the treatment been 0 and had he studied at whatever
level he would have studied had the treatment been 1?

This rather intricate question, which involves nested conditionals, is the basis for defining
mediation, to be discussed fully in Section 5.4. Using our subscript notation, the quantity
sought can be written as Y0,Z1

, where Z1 is the value that Z would attain had X been one.

= 0.7α

ε1 ε3

ε2

= 0.7α

ε1 ε3

ε2
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=
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 0.4
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(a)

Z

= 0.5 = 0.75

= 1.25

= 1X Y

= 0.75 = 0.75

= 0.5

= 0

Z

= 0.75

= 1.25

(b)

X Y= 1.25= 1.95

Figure 5: Unit-specific structural models used for answering a nested counterfactual question
concerning the indirect effect of X on Y . (a) Modified model needed for calculating Z1. (b)
Modified model needed for calculating Y0,Z1

.

To compute this quantity we need to form two modified models. The first, shown in
Figure 5(a), to compute Z1, the second antecedent in Y0,Z1

:

Z1 = 1.0× 0.5 + 0.75 = 1.25
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The second, shown in Figure 5(b), to compute Y0,Z1
and thus provide an answer to Q2:

Y0,Z1
= Y0,1.25 = 1.25× 0.4 + 0.75 = 1.25

If we compare this value of Y0,Z1
= 1.25 with Joe’s outcome had he not received any

treatment, Y0 = 0.75× 0.4+ 0.75, = 1.05, the difference is, as expected, the indirect effect of
X on Y , Y0,Z1

− Y0 = 0.20 = β × γ.
This exercise may seem unnecessarily complicated in linear models, where we can compute

our desired quantity directly from the product β × γ. The benefit of using counterfactuals
will be revealed in Section 5.5 where indirect effects will be defined for discrete variables,
and estimated from data without assuming any parametric forms of the equations.

4.4.2 Predicting outcomes and potential outcomes in empirical studies

Having convinced ourselves that every counterfactual question can be answered (using Eq. (6))
from a fully specified structural model, we next move to population level analysis and ask
a policy related question on a set of 10 individuals with Joe being participant 1. Each in-
dividual is characterized by a distinct vector ui = (ε1i, ε2i, ε3i), as shown in the first three
columns of Table 1.

Participant Observed Predicted
characteristics behavior Potential Outcomes

Participant ε1 ε2 ε3 X Y Z Y0 Y1 Z0 Z1 Y00 . . .
1 0.5 0.75 0.75 0.5 1.50 1.0 1.05 1.95 0.75 1.25 0.75
2 0.3 0.1 0.4 0.3 0.71 0.25 0.44 1.34 0.1 0.6 0.4
3 0.5 0.9 0.2 0.5 1.01 1.15 0.56 1.46 0.9 1.4 0.2
4 0.6 0.5 0.3 0.6 1.04 0.8 0.50 1.40 0.5 1.0 0.3
5 0.5 0.8 0.9 0.5 1.67 1.05 1.22 2.12 0.8 1.3 0.9
6 0.7 0.9 0.3 0.7 1.29 1.25 0.66 1.56 0.9 1.4 0.3
7 0.2 0.3 0.8 0.2 1.10 0.4 0.92 1.82 0.3 0.8 0.8
8 0.4 0.6 0.2 0.4 0.80 0.8 0.44 1.34 0.6 1.1 0.2
9 0.6 0.4 0.3 0.6 1.00 0.7 0.46 1.36 0.4 0.9 0.3
10 0.3 0.8 0.3 0.3 0.89 0.95 0.62 1.52 0.8 1.3 0.3

Table 1: Potential and Observed Outcomes predicted by the structural model of Figure 4(a)
units were selected at random, with each εi uniformly distributed over [0, 1].

For each triplet (ε1, ε2, ε3), the model of Figure 4(a) enables us to complete a full row of
the table, including Y0 and Y1, which stand for the potential outcomes under control (X = 0)
and treatment (X = 1) conditions, respectively. We see that a simple structural model like
the one in Figure 4(a) encodes in effect a synthetic population of individuals together with
their predicted behavior under both observational and experimental conditions. The columns
labeled X, Y, Z predict the results of observational studies, and those labeled Y0, Y1, Z0, Z1

predict the hypothetical outcome under two treatment regimes, X = 0, and X = 1. Many
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more, in fact infinite potential outcomes may be predicted as well, for example, YX=0.5,Z=2.0

computed in Figure 4(c), and all combinations of subscripted variables. From this synthetic
population one can find the distribution of every counterfactual query on variables X, Y, Z,
including, in particular, retrospective counterfactuals, such as the probability that a person
chosen at random would have passed the exam by getting assistance given that, in reality,
he/she failed the exam and did not receive any assistance.6

This prediction power was facilitated of course with the help of two untestable pieces of
information: (1) the structure of the model (which include the assumption of independent
error terms) and (2) the values of the model parameters (which include the distribution of
each exogenous variable). Whereas the latter can often be inferred from the data (see Section
5.3), the former depends largely on scientific judgment.

Now assume that we have no information whatsoever about the underlying model and all
we have are measurements on Y taken in the experimental study in which X is randomized
over two levels, X = 0 and X = 1.

Predicted Observed
Potential Outcomes Outcomes

Participant Y0 Y1 Y0 Y1

1 1.05 1.95 1.05 �

2 0.44 1.34 � 1.34
3 0.56 1.46 � 1.46
4 0.50 1.40 � 1.40
5 1.22 2.12 1.22 �

6 0.66 1.56 0.66 �

7 0.92 1.82 � 1.82
8 0.44 1.34 0.44 �

9 0.46 1.36 � 1.36
10 0.62 1.52 0.62 �

︸ ︷︷ ︸ ︸ ︷︷ ︸

True average treat-
ment effect: 0.90

Study average treat-
ment effect: 0.68

Table 2: Potential and Observed Outcomes in a randomized clinical trial with X randomized
over X = 0 and X = 1.

Table 2 describes the responses of the same 10 participants (Joe being participant 1)
under such experimental conditions. The first two columns give the true potential outcomes
(taken from Table 1) while the last two columns describe the information available to the
experimenter, where a Square indicates that the response was not observed.7 Randomization

6This probability, written P (Y1 = 1|X = 0, Y = 0), also known as the “probability of causation” (Pearl,
2009, Ch. 9) quantifies “causes of effect,” as opposed to “effect of causes,” and was excluded, prematurely I
presume, from the province of potential outcome analysis (Holland, 1986).

7Such tables are normally used to explain the philosophy behind the potential outcome framework (e.g.,
West and Thoemmes (2010)) in which Y1 and Y0 are taken as unexplained random variables. Here they are
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assures us that, although half of the potential outcomes are not observed, the difference
between the observed means in the treatment and control groups, will converge to the average
of the true difference, E(Y1 − Y0) = 0.9.

In our model, since all exogenous variables are independent, the slope of the regression
of Y on X would also converge to the average causal effect. Bias will be introduced if ε1

is correlated with ε2 or with ε3. However, such correlation will not bias the average causal
effect estimated in the experimental study.

4.5 Relations to the Potential Outcome Framework

Definition 2 constitutes the bridge between SEM and a framework called “potential outcome”
(Rubin, 1974) which is often presented as a “more principled alternative” to SEM (Holland,
1988; Rubin, 2004; Wilkinson et al., 1999; Sobel, 1996, 2008). Such presentations are mis-
leading and misinformed; the two frameworks have been proven to be a logically equivalent,
differing only in the language in which researchers are permitted to express assumptions.
A theorem in one is a theorem in the other (Pearl, 2009, pp. 228–31), with Definition 2
providing the formal basis for both.

The idea of potential-outcome analysis is simple. Researchers who feel uncomfortable
presenting their assumptions in diagrams or structural equations may do so in a round-
about way, using randomized trial as the ruling paradigm, and interpret the counterfactual
Yx(u) as the potential outcome of subject u to hypothetical treatment X = x ignoring
the mechanisms that govern that outcome. The causal inference problem is then set up
as one of “missing data,” where the missing data are the potential outcomes Yx(u) under
the treatment not received, while the observed data are the potential outcomes under the
received treatments, as shown in Table 2.

Thus, Yx becomes a new latent variable which reveals its value only when X = x, through
the relation

X = x =⇒ Yx = Y, (7)

sometimes written (for binary X):

Y = xY1 + (1− x)Y0

Beyond this relation (known as “consistency assumption”), the investigator may ignore
the fact that Yx is actually Y itself, only measured under different conditions (as in Figure
4(c)), and proceed to estimate the average causal effect, E(Yx′)−E(Yx), with all the machin-
ery that statistics has developed for missing data. Moreover, since (7) is also a theorem in
the logic of structural counterfactuals (Pearl, 2009, Ch. 7) and a complete one,8 researchers
in this camp are guaranteed never to obtain results that conflict with those derived in the
structural framework.

The weakness of this approach surfaces in the problem formulation phase where, deprived
of diagrams and structural equations, researchers are forced to express the (inescapable)

defined by, and derived from a simple structural model.
8In other words, a complete axiomization of structural counterfactuals in recursive systems consists of

(7) and a few non essential details (Halpern, 1998).
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assumption set A in a language totally removed from scientific knowledge, for example, in
the form of conditional independencies among counterfactual variables (see Pearl, 2010a).

For example, to express the fact that, in randomized trial, X is independent on both ε2

and ε3 (Figure 4(a)), the investigator would need to write the cryptic, “strong ignorability”
expression X⊥⊥{Z1, Z0, Y00, Y01, Y10, Y11}. To overcome this obstacle, Pearl (2009) has de-
vised a way of combining the best features of the two approaches. It is based on encoding
causal assumptions in the language of diagrams or structural equations; translating these
assumptions into counterfactual notation; performing derivation in the algebraic language of
counterfactuals, using axioms derived from equation (6) and, finally, interpreting the result
in plain causal language. The mediation problem discussed in Section 5.4 illustrates how
such symbiosis clarifies the conceptualization and estimation of direct and indirect effects, a
task that has lingered on for several decades.

5 The Testable Implications of Structural Models

This section deals with the testable implications of structural models, sometimes called
“over-identifying restrictions,” and ways of reading them from the graph.

5.1 The d-separation criterion

Although each causal assumption in isolation cannot be tested in non-experimental studies,
the sum total of all causal assumptions in a model often has testable implications. The chain
model of Figure 3(a), for example, encodes seven causal assumptions, each corresponding
to a missing arrow or a missing double-arrow between a pair of variables. None of those
assumptions is testable in isolation, yet the totality of all seven assumptions implies that Z
is unassociated with Y in every stratum of X. Such testable implications can be read off
the diagrams using a graphical criterion known as d-separation (Pearl, 1988).

Definition 3 (d-separation)
A set S of nodes is said to block a path p if either (1) p contains at least one arrow-emitting
node that is in S, or (2) p contains at least one collision node that is outside S and has
no descendant in S. If S blocks all paths from set X to set Y , it is said to “d-separate X
and Y,” and then, it can be shown that variables X and Y are independent given S, written
X⊥⊥Y |S.9

To illustrate, the path UZ → Z → X → Y in Figure 3(a) is blocked by S = {Z} and
by S = {X}, since each emits an arrow along that path. Consequently we can infer that
the conditional independencies UZ⊥⊥Y |Z and UZ⊥⊥Y |X will be satisfied in any probability
function that this model can generate, regardless of how we parametrize the arrows. Like-
wise, the path UZ → Z → X ← UX is blocked by the null set {∅}, but it is not blocked
by S = {Y } since Y is a descendant of the collision node X. Consequently, the marginal
independence UZ⊥⊥UX will hold in the distribution, but UZ⊥⊥UX |Y may or may not hold.
This special handling of collision nodes (or colliders, e.g., Z → X ← UX) reflects a general

9See Hayduk et al. (2003); Mulaik (2009), and Pearl (2009, p. 335)) for gentle introduction to d-separation.
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phenomenon known as Berkson’s paradox (Berkson, 1946), whereby observations on a com-
mon consequence of two independent causes render those causes dependent. For example,
the outcomes of two independent coins are rendered dependent by the testimony that at
least one of them is a tail.

The testable implications of any given model are vividly advertised by its associated
graph G. Each d-separation condition in G corresponds to a conditional independence test
that can be performed on the data to support or refute the validity of M . These can easily
be enumerated by attending to each missing edge in the graph and selecting a set of variables
that d-separate the pair of variables corresponding to that missing edge. For example, in
Figure 6, three of the missing edges are Z1 − Z2, Z1 − Y , and Z2 − X with separating

Z1

Z3

Z2

Y

X

W

W

W

1

2

3

Figure 6: A Markovian model illustrating d-separation. Error terms are assumed mutually
independent and not shown explicitly.

sets {∅}, {X, Z2, Z3} and {Z1, Z3} respectively. Accordingly, the testable implications of M
include Z1⊥⊥Z2, Z1⊥⊥Y |{X, Z2, Z3}, and Z2⊥⊥X|{Z1, Z3}.

In linear systems, these conditional independence constraints translate into zero partial
correlations, or zero coefficients in the corresponding regression equations. For example, the
three implications above translate into the following constraints: rZ1Z2

= 0, rY Z1·XZ2Z3
= 0

and rZ2X ·Z1Z3
= 0

Such tests are easily conducted by routine regression techniques, and they provide valu-
able diagnostic information for model modification, in case any of them fail (see Pearl, 2009,
pp. 143–45). Software routines for automatic detection of all such tests, as well as other
implications of graphical models, are reported in Kyono (2010).

If the model is Markovian (i.e., acyclic with uncorrelated errors), then the d-separation
conditions are the only testable implications of the model. If the model contains correlated
errors, additional constraints are imposed, called “dormant independence” (Shpitser and
Pearl, 2008) or Verma’s constraints (Verma and Pearl, 1990; McDonald, 2002), generated
by missing links that would otherwise be identified (e.g., the missing link from Z to W in
Figure 7). This means that traditional algebraic methods of recognizing “over-identified
models,” deriving “over-identifying restrictions” and determining “parameter identification”
(Kenny and Milan, 2011)10 can be replaced by simple graphical conditions, advertised by
non-adjacent variables in the model.

10The nomenclature “over-identifying restriction” somewhat misleading, because a model may have many
testable implications and none of its parameters identified. Likewise, the traditional algebraic distinction
between “over-identified” and “just identified” parameters is usually misleading (see Pearl, 2004).
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5.2 Equivalent Models

D-separation also defines conditions for model equivalence that are easily ascertained in the
Markovian models (Verma and Pearl, 1990) as well a semi-Markovian models (Ali et al.,
2009). These mathematically proven conditions should amend the restricted (and error
prone) rules currently prevailing in SEM’s research (Kline (2011); Williams (2011)), based
primarily on the replacement rules of Lee and Hershberger (1990). The general necessary
rule for any modification of a model to preserve equivalence is that the modification not
create or destroy any d-separation condition in the modified graph.

For example, consider the model of Figure 7. According to the replacement criterion of

Z WX

Y

Figure 7: Showing discrepancy between Lee and Hershberger’s replacement rule and d-
separation, which forbids the replacement of X → Y by X ↔ Y .

Lee and Hershberger we can replace the arrow X → Y with a double-arrow edge X ↔ Y
(representing residual correlation) when all predictors (Z) of the effect variable (Y ) are
the same as those for the source variable (X) (see Hershberger, 2006). Unfortunately, the
postreplacement model imposes a constraint, rWZ·Y = 0, that is not imposed by the pre-
replacement model. This can be seen from the fact that, conditioned on Y , the path Z →
Y ← X ↔ W is unblocked and will becomes blocked if replaced by Z → Y ↔ X ↔ W .
The same applies to path Z → X ↔ W , since Y would cease to be a descendant of X.

5.3 Identification Using Graphs—the Back-Door Criterion

Consider an observational study where we wish to find the effect of X on Y —for example,
treatment on response—and assume that the factors deemed relevant to the problem are
structured as in Figure 6; some of these factors may be unmeasurable, such as genetic
trait or life style; others are measurable, such as gender, age, and salary level. Using the
terminology of Section 3, our problem is to determine whether the query Q = P (y|do(x)) is
identifiable, given the model and, if so, to derive an estimand Q(P ) to guide the estimation
of Q.

This problem is typically solved by “adjustment,” that is, selecting a subset of factors
for measurement, so that comparison of treated versus untreated subjects having the same
values of the selected factors gives the correct treatment effect in that subpopulation of
subjects. Such a set of factors is called a “sufficient set” or “admissible set” for adjustment.

The following criterion, named “back-door” in Pearl (1993), provides a graphical method
of selecting admissible sets of factors, and demonstrates that nonparametric queries such as
Q = P (y|do(x)) can sometimes be identified with no knowledge of the functional form of the
equations or the distributions of the latent variables in M .
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Definition 4 (admissible sets—the back-door criterion) A set S is admissible (or “suffi-
cient”) if two conditions hold:

1. No element of S is a descendant of X.

2. The elements of S “block” all “back-door” paths from X to Y —namely, all paths that
end with an arrow pointing to X.

In this criterion, “blocking” is interpreted as in Definition 1. Based on this criterion we see,
for example in Figure 6, that the sets {Z1, Z2, Z3}, {Z1, Z3}, {W1, Z3}, and {W2, Z3} are
each sufficient for adjustment, because each blocks all back-door paths between X and Y .
The set {Z3}, however, is not sufficient for adjustment because it does not block the path
X ← W1 ← Z1 → Z3 ← Z2 → W2 → Y .

The intuition behind the back-door criterion is as follows. The back-door paths in the
diagram carry spurious associations from X to Y , while the paths directed along the arrows
from X to Y carry causative associations. Blocking the former paths (by conditioning
on S) ensures that the measured association between X and Y is purely causal, namely,
it correctly represents the target quantity: the causal effect of X on Y . The reason for
excluding descendants of X (e.g., W3 or any of its descendants) and conditions for relaxing
this restriction are given in (Pearl, 2009, p. 338–41).

5.3.1 Identifying parameters and causal effects

The back-door criterion provides a simple solution to many identification problems, in both
linear and nonlinear models, and is summarized in the next theorem.

Theorem 1 (Causal Effects Identification)
For any two disjoint sets of variables, X and Y in a causal diagram G, the causal effect of
X on Y is given by

P (Y = y|do(X = x)) =
∑

s

P (Y = y|X = x, S = s)P (S = s) (8)

where S is any set of covariates satisfying the back-door condition of Definition 4.

Since all factors on the right-hand side of the equation are estimable (e.g., by regression)
from pre-interventional data, the causal effect can likewise be estimated from such data
without bias.

In linear systems, identified causal effect expressions like equation (8) reduce to sums and
products of partial regression coefficients. For example, if we wish to estimate the total effect
τXY of X on Y in the linear version of Figure 6, we simply take the regression coefficient of
Y on X, partialled on any sufficient set S, giving:

τXY = rY X ·S = rY X ·Z1,Z3
= rY X ·W1,Z3

= . . .

Current SEM practices do not take advantage of this capability to decide identification
graphically, prior to obtaining data, and to estimate the identified quantities directly, by
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partialling out sufficient sets (see Kenny and Milan, 2011). Rather, the prevailing practice is
either to engage in lengthy algebraic manipulations, or to identify the model in its entirety
by running ML routines on noisy data and hoping for their convergence. This is unfortunate
because the target quantity may often be identifiable when the model as a whole is not
(see (Pearl, 2009, p. 151) for examples). Moreover, estimation accuracy deteriorates when
we allow noisy data of irrelevant variables to corrupt the estimation of the target quantity
(McDonald, 2004). The theory of d-separation and the back-door criterion enable us to focus
the identification of target quantities on the relevant variables and extract an identifying
estimand by inspection or through algorithmic routines (Kyono, 2010). We also note that,
when applied to linear models, all identification conditions are valid for feedback systems as
well.

5.3.2 Parametric identification in linear SEM

Remarkably, a close cousin of the back door criterion, has resolved an age-long identification
problem in linear SEMs: Under what conditions can a path coefficient βXY be estimated
by regression, and what variables should serve as the regressors? The answer is given by a
criterion called “single door” (Pearl, 2009, p. 150) which reads:

Corollary 1 (the single door criterion)
Let βXY be the structural coefficient labeling the arrow X → Y and let rY X ·S stand for the
X coefficient (slope) in the regression of Y on X and S, namely, rY X ·S = ∂

∂x
E(Y |x, s). The

equality βXY = rY X ·S holds if

1. the set S contains no descendant of Y and

2. S blocks all paths between X to Y , except the direct path X → Y .

In Figure 7, for example, βXY equals rY X ·Z , or the coefficient b1 in the regression Y =
b1X + b2Z + ε, while βY W , labeling the arrow Y → W , is equal rWY ·XZ . Note that regressing
W on Y and X alone is insufficient, for it would leave the path Y ← Z → X ↔ W unblocked.
In a similar fashion we obtain βZY = rY Z·X and βZX = rXZ .

If no set S can be found that satisfies the conditions of Corollary 1 then βXY cannot be
reduced to a single regression coefficient, and other identification techniques may be invoked,
for example, instrumental variables (Brito and Pearl, 2002a).

5.3.3 Recognizing Instrumental Variables

Instrumental variables is one of the oldest identification technique devised for linear systems
(Wright, 1928). The method relies on finding a variable Z that is correlated with X and
is deemed uncorrelated with the error term in an equation (see Pearl, 2009, pp. 242–48,
for formal definition). While no statistical test can certify a variable as instrument, the
d-separation criterion permits us to identify such variables in the causal graph, and use
them to identify parameters that do not satisfy the condition of Corollary 1. Moreover, the
graph also shows us how to turn variables into instruments when none exist. In Figure 6,
for example, Z1 is not an instrumental variable for the effect of Z3 on Y , because there is a
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directed path from Z3 to Y , via W1 and X. Controlling for X will not remedy the situation
because X being a descendant of Z3 would unblock the path Z1 → Z3 ← Z2 → W2 → Y .
However, controlling for W1 will render Z1 a legitimate instrumental variable, since all paths
connecting Z1 to Y would go through Z3.

The general criterion is given by the following Theorem.

Theorem 2 (Identification using instrumental variables)
Let βXY stand for the path coefficient assigned to the arrow X → Y in a causal graph G.
Parameter βXY is identified if there exists a pair (Z, W ), where Z is a single node in G (not
excluding Z = X), and W is a (possibly empty) set of nodes in G, such that:

1. W consists of nondescendants of Y ,

2. W d-separates Z from Y in the graph GXY formed by removing X → Y from G,

3. Z and X are d-connected, given W , in GXY .

Moreover, the estimand induced by the pair (Z, W ) is given by:

βXY =
cov(Y, Z|W )

cov(X, Z|W )
.

Additional identification conditions for linear models are given in Pearl (2009, Ch. 5), Mc-
Donald (2002, 2004), and Brito and Pearl (2002a,b) and implemented in Kyono (2010). For
example, a sufficient model-identification condition resulting from these techniques is the
“non-bow rule” (Brito and Pearl, 2002b), i.e., that any pair of variables be connected by
at most one type of edge. For example, one can add a bi-directed arc between any two
non-adjacent variables in Figure 6 and still be able to identify all model parameters.11 Com-
plete graphical criteria for causal-effect identification in nonparametric models is developed
in Tian and Pearl (2002) and Shpitser and Pearl (2006b).

5.4 Mediation: Direct and Indirect Effects

5.4.1 Decomposing effects, aims, and challenges

The decomposition of effects into their direct and indirect components carries theoretical
scientific importance, for it tells us “how nature works” and, therefore, enables us to predict
behavior under a rich variety of conditions and interventions. For example, an investigator
may be interested in assessing the extent to which the effect of a given variable can be reduced
by weakening an intermediate process, standing between that variable and the outcome.

Structural equation models provide a natural language for analyzing path-specific effects
and, indeed, considerable literature on direct, indirect, and total effects has been authored by
SEM researchers (Bollen, 1989)), for both recursive and nonrecursive models. This analysis
usually involves sums of powers of coefficient matrices, where each matrix represents the
path coefficients associated with the structural equations.

11This rule subsumes Bollen’s (1989, p. 95) “recursive rule,” which forbids a bi-directed arc between a
variable and any of its ancestors.
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Yet despite its ubiquity, the analysis of mediation has long been a thorny issue in the
social and behavioral sciences (Baron and Kenny, 1986; MacKinnon, 2008) primarily because
the distinction between causal parameters and their regressional interpretations were often
conflated, as in (Holland, 1995) and (Sobel, 2008). The difficulties were further amplified in
nonlinear models, where sums and products are no longer applicable. As demands grew to
tackle problems involving categorical variables and nonlinear interactions, researchers could
no longer define direct and indirect effects in terms of structural or regressional coefficients,
and all attempts to extend the linear paradigms of effect decomposition to nonlinear sys-
tems produced distorted results (MacKinnon et al., 2007). The counterfactual reading of
structural equations (6) enables us to redefine and analyze direct and indirect effects from
first principles, uncommitted to distributional assumptions or a particular parametric form
of the equations.

5.4.2 Direct Effects

YXYX

W1 W2

(b)(a)

Z Z

Figure 8: A generic model depicting mediation through Z (a) with no confounders and (b)
two confounders, W1 and W2.

Conceptually, we can define the direct effect DEx,x′(Y )12 as the expected change in Y
induced by changing X from x to x′ while keeping all mediating factors constant at whatever
value they would have obtained under do(x) (Robins and Greenland, 1992; Pearl, 2001).
Accordingly, Pearl (2001) defined direct effect using counterfactual notation:

DEx,x′(Y ) = E(Yx′,Zx
)− E(Yx). (9)

Here, Yx′,Zx
represents the value that Y would attain under the operation of setting X to x′

and, simultaneously, setting Z to whatever value it would have obtained under the setting
X = x. Given certain assumptions of “no confounding,” it is possible to show Pearl (2001)
that the direct effect can be reduced to a do-expression:

DEx,x′(Y ) =
∑

zw

[E(Y |(do(x′, z), w)− E(Y |do(x, z), w)]P (z|do(x), w)P (w) (10)

where W satisfies the back-door criterion relative to both X → Z and (X, Z)→ Y .

12Robins and Greenland (1992) called this notion of direct effect “Pure” while Pearl called it “Natural,”
denoted NDE, to be distinguished from the “controlled direct effect” which is specific to one level of the
mediator Z. We will delete the letter “N” from the acronyms of both the direct and indirect effect, and use
DE and IE, respectively.
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In particular, expression (10) is both valid and identifiable in Markovian models (i.e.,
no unobserved confounders) where each term on the right can be reduced to a “do-free”
expression using equation (8) and then estimated by regression.

For example, for the model in Figure 8(b), equation (10) reads

DEx,x′(Y ) =
∑

z

∑

w2

P (w2)[E(Y |x′, z, w2))− E(Y |x, z, w2))]
∑

w1

P (z|x, w1, w2)P (w1). (11)

while for the confounding-free model of Figure 8(a) we have

DEx,x′(Y ) =
∑

z

[E(Y |x′, z)− E(Y |x, z)]P (z|x). (12)

Both (11) and (12) can be estimated by a two-step regression.

5.5 Indirect Effects

Remarkably, the definition of the direct effect (9) can be turned around and provide an
operational definition for the indirect effect—a concept shrouded in mystery and controversy,
because it is impossible, by controlling any of the variables in the model, to disable the direct
link from X to Y so as to let X influence Y solely via indirect paths.

The indirect effect, IE, of the transition from x to x′ is defined as the expected change
in Y affected by holding X constant, at X = x, and changing Z to whatever value it would
have attained had X been set to X = x′. Formally, this reads

IEx,x′(Y )
∆
= E[(Yx,Zx′

)− E(Yx)], (13)

which is almost identical to the direct effect (equation 9) save for exchanging x and x′ in the
first term (Pearl, 2001).

Indeed, it can be shown that, in general, the total effect TE of a transition is equal to the
difference between the direct effect of that transition and the indirect effect of the reverse
transition. Formally,

TEx,x′(Y )
∆
= E(Yx′ − Yx) = DEx,x′(Y )− IEx′,x(Y ). (14)

In linear systems, where reversal of transitions amounts to negating the signs of their effects,
we have the standard additive formula

TEx,x′(Y ) = DEx,x′(Y ) + IEx,x′(Y ). (15)

Since each term above is based on an independent operational definition, this equality con-
stitutes a formal justification for the additive formula used routinely in linear systems.

5.6 The Mediation Formula: A Simple Solution to a Thorny Prob-

lem

This subsection demonstrates how the solution provided in equations (12) and (15) can be
applied in assessing mediation effects in nonlinear models. We will use the simple mediation
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model of Figure 8(a), where all error terms (not shown explicitly) are assumed to be mutually
independent, with the understanding that adjustment for appropriate sets of covariates W
may be necessary to achieve this independence (as in equation 11) and that integrals should
replace summations when dealing with continuous variables (Imai et al., 2010).

Combining (12) and (14), the expression for the indirect effect, IE, becomes

IEx,x′(Y ) =
∑

z

E(Y |x, z)[P (z|x′)− P (z|x)] (16)

which provides a general formula for mediation effects, applicable to any nonlinear system,
any distribution (of U), and any type of variables. Moreover, the formula is readily estimable
by regression. Owing to its generality and ubiquity, I have referred to this expression as the
“Mediation Formula” (Pearl, 2009, 2011).

The Mediation Formula represents the average increase in the outcome Y that the tran-
sition from X = x to X = x′ is expected to produce absent any direct effect of X on Y .
Though based on solid causal principles, it embodies no causal assumption other than the
generic mediation structure of Figure 8(a). When the outcome Y is binary (e.g., recovery,
or hiring) the ratio (1− IE/TE) represents the fraction of responding individuals who owe
their response to direct paths, while (1 − DE/TE) represents the fraction who owe their
response to Z-mediated paths.

The Mediation Formula tells us that IE depends only on the expectation of the coun-
terfactual Yxz, not on its functional form fY (x, z, uY ) or its distribution P (Yxz = y). It calls
therefore for a two-step regression which, in principle, can be performed nonparametrically.
In the first step we regress Y on X and Z, and obtain the estimate

g(x, z) = E(Y |x, z) (17)

for every (x, z) cell. In the second step we fix x and regard g(x, z) as a function gx(z) of Z.
We now estimate the conditional expectation of gx(z), conditional on X = x′ and X = x,
respectively, and take the difference

IEx,x′(Y ) = EZ|X [gx(z)|x′]− EZ|X [gx(z)|x]. (18)

Nonparametric estimation is not always practical. When Z consists of a vector of several
mediators, the dimensionality of the problem might prohibit the estimation of E(Y |x, z)
for every (x, z) cell, and the need arises to use parametric approximation. We can then
choose any convenient parametric form for E(Y |x, z) (e.g., linear, logit, probit), estimate
the parameters separately (e.g., by regression or maximum likelihood methods), insert the
parametric approximation into (16) and estimate its two conditional expectations (over z)
to get the mediated effect (VanderWeele, 2009).

Let us examine what the Mediation Formula yields when applied to the linear version of
Figure 8(a), which reads

x = uX

z = b0 + βx + uZ (19)

y = c0 + αx + γz + uY
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with uX , uY , and uZ uncorrelated, zero-mean error terms. Computing the conditional ex-
pectation in (16) gives

E(Y |x, z) = E(c0 + αx + γz + uY ) = c0 + αx + γz

and yields

IEx,x′(Y ) =
∑

z

(αx + γz)[P (z|x′)− P (z|x)].

= γ[E(Z|x′)− E(Z|x)] (20)

= (x′ − x)(βγ) (21)

= (x′ − x)(τ − α) (22)

where τ is the slope of the total effect;

τ = (E(Y |x′)− E(Y |x))/(x′ − x) = α + βγ.

We thus obtained the standard expressions for indirect effects in linear systems, which
can be estimated either as a difference τ − α of two regression coefficients (equation 22) or
as a product βγ of two regression coefficients (equation 21) (see MacKinnon et al., 2007).
These two strategies do not generalize to nonlinear systems; direct application of (16) is
necessary Pearl (2010a).

To understand the difficulty, assume that the correct model behind the data contains a
product term δxz added to equation (19), giving:

y = c0 + αx + γz + δxz + uY

Further assume that we correctly account for this added term and, through sophisticated
regression analysis, we obtain accurate estimates of all parameters in the model. It is still not
clear what combinations of parameters measure the direct and indirect effects of X on Y , or,
more specifically, how to assess the fraction of the total effect that is explained by mediation
and the fraction that is owed to mediation. In linear analysis, the former fraction is captured
by the product βγ/τ (equation 21), the latter by the difference (τ −α)/τ (equation 22) and
the two quantities coincide. In the presence of interaction, however, each fraction demands
a separate analysis, as dictated by the Mediation Formula.

To witness, substituting the nonlinear equation in (12), (15) and (16) and assuming x = 0
and x′ = 1, yields the following effect decomposition:

DE = α + b0δ

IE = βγ

TE = α + b0δ + β(γ + δ)

= DE + IE + βγ

We therefore conclude that the portion of output change for which mediation would be
sufficient is

IE = βγ
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while the portion for which mediation would be necessary is

TE −DE = βγ + βδ

We note that, due to interaction, a direct effect can be sustained even when the parameter
α vanishes and, moreover, a total effect can be sustained even when both the direct and
indirect effects vanish. This illustrates that estimating parameters in isolation tells us little
about the effect of mediation and, more generally, mediation and moderation are intertwined
and cannot be assessed separately.

If the policy evaluated aims to prevent the outcome Y by ways of weakening the mediating
pathways, the target of analysis should be the difference TE − DE, which measures the
highest prevention potential of any such policy. If, on the other hand, the policy aims to
prevent the outcome by weakening the direct pathway, the target of analysis should shift to
IE, for TE − IE measures the highest preventive potential of this type of policies.

The main power of the Mediation Formula shines in studies involving categorical vari-
ables, especially when we have no parametric model of the data generating process. To
illustrate, consider the case where all variables are binary, still allowing for arbitrary inter-
actions and arbitrary distributions of all processes. The low dimensionality of the binary
case permits both a nonparametric solution and an explicit demonstration of how media-
tion can be estimated directly from the data. Generalizations to multi-valued outcomes are
straightforward.

Assume that the model of Figure 8(a) is valid and that the observed data is given by
Table 3. The factors E(Y |x, z) and P (Z|x) can be readily estimated as shown in the two

Number
X Z Y E(Y |x, z) = gxz E(Z|x) = hxof Samples

n1 0 0 0 n2

n1+n2

= g00
n3+n4

n1+n2+n3+n4

= h0
n2 0 0 1
n3 0 1 0 n4

n3+n4

= g01n4 0 1 1

n5 1 0 0 n6

n5+n6

= g10
n7+n8

n5+n6+n7+n8

= h1
n6 1 0 1
n7 1 1 0 n8

n7+n8

= g11n8 1 1 1

Table 3: Computing the Mediation Formula for the model in Figure 8(a), with X, Y, Z
binary.

right-most columns of Table 3 and, when substituted in (12), (15), (16), yield

DE = (g10 − g00)(1− h0) + (g11 − g01)h0 (23)

IE = (h1 − h0)(g01 − g00) (24)

TE = g11h1 + g10(1− h1)− [g01h0 + g00(1− h0)] (25)

We see that logistic or probit regression is not necessary; simple arithmetic operations suffice
to provide a general solution for any conceivable data set, regardless of the data-generating
process.
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Numerical example

To anchor these formulas in a concrete example, let us assume that X = 1 stands for a
drug treatment, Y = 1 for recovery, and Z = 1 for the presence of a certain enzyme in a
patient’s blood which appears to be stimulated by the treatment. Assume further that the
data described in Tables 4 and 5 was obtained in a randomized clinical trial and that our
research question is whether Z mediates the action of X on Y , or is merely a catalyst that
accelerates the action of X on Y .

Treatment Enzyme present Percentage cured
X Z gxz = E(Y |x, z)

YES YES g11 = 80%
YES NO g10 = 40%
NO YES g01 = 30%
NO NO g00 = 20%

Table 4:

Treatment Percentage with
X Z present
NO h0 = 40%
YES h1 = 75%

Table 5:

Substituting this data into Eqs. (23)–(25) yields:

DE = (0.40− 0.20)(1− 0.40) + (0.80− 0.30)0.40 = 0.32

IE = (0.75− 0.40)(0.30− 0.20) = 0.035

TE = 0.80× 0.75 + 0.40× 0.25− (0.30× 0.40 + 0.20× 0.60) = 0.46

IE/TE = 0.07 DE/TE = 0.696 1−DE/TE = 0.304

We conclude that 30.4% of all recoveries is owed to the capacity of the treatment to enhance
the secretion of the enzyme, while only 7% of recoveries would be sustained by enzyme
enhancement alone. The policy implication of such a study would be that efforts to develop
a cheaper drug, identical to the one studied, but lacking the potential to stimulate enzyme
secretion would face a reduction of 30.4% in recovery cases. More decisively, proposals to
substitute the drug with one that merely mimics its stimulant action on Z but has no direct
effect on Y are bound for failure; the drug evidently has a beneficial effect on recovery that
is independent of, though enhanced by enzyme stimulation.

In comparing these results to those produced by conventional mediation analyses we
should note that conventional methods do not define direct and indirect effects in a setting
where the underlying process is unknown. MacKinnon (2008, Ch. 11), for example, analyzes
categorical data using logistic and probit regressions and constructs effect measures using
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products and differences of the parameters in those regressional forms. This strategy is not
compatible with the causal interpretation of effect measures, even when the parameters are
precisely known; IE and DE may be extremely complicated functions of those regression
coefficients (Pearl, 2010b). Fortunately, those coefficients need not be estimated at all; effect
measures can be estimated directly from the data, circumventing the parametric analysis
altogether, as shown in equations (23)–(25).

Attempts to extend the difference and product heuristics to nonparametric analysis have
encountered ambiguities that conventional analysis fails to resolve.

The product-of-coefficients heuristic advises us to multiply the unit effect of X on Z

Cβ = E(Z|X = 1) −E(Z|X = 0) = h1 − h0

by the unit effect of Z on Y given X,

Cγ = E(Y |X = x, Z = 1) − E(Y |X = x, Z = 0) = gx1 − gx0

but does not specify on what value we should condition X. Equation (24) resolves this
ambiguity by determining that Cγ should be conditioned on X = 0; only then would the
product CβCγ yield the correct mediation measure, IE.

The difference-in-coefficients heuristics instructs us to estimate the direct effect coefficient

Cα = E(Y |X = 1, Z = z)− E(Y |X = 0, Z = z) = g1z − g0z

and subtract it from the total effect, but does not specify on what value we should condition
Z. Equation (23) determines that the correct way of estimating Cα would be to condition
on both Z = 0 and Z = 1 and take their weighted average, with h0 = P (Z = 1|X = 0)
serving as the weighting function.

To summarize, the Mediation Formula dictates that, in calculating IE, we should con-
dition on both Z = 1 and Z = 0 and average while, in calculating DE, we should condition
on only one value, X = 0, and no average need be taken.

The difference and product heuristics are both legitimate, with each seeking a different
effect measure. The difference heuristics, leading to TE−DE, seeks to measure the percent-
age of units for which mediation was necessary. The product heuristics on the other hand,
leading to IE, seeks to estimate the percentage of units for which mediation was sufficient.
The former informs policies aiming to modify the direct pathway while the latter informs
those aiming to modify mediating pathways.

In addition to providing causally sound estimates for mediation effects, the Mediation
Formula also enables researchers to evaluate analytically the effectiveness of various paramet-
ric specifications relative to any assumed model. This type of analytical “sensitivity analysis”
has been used extensively in statistics for parameter estimation but could not be applied to
mediation analysis, owing to the absence of an objective target quantity that captures the
notion of indirect effect in both linear and nonlinear systems, free of parametric assumptions.
The Mediation Formula of equation (16) explicates this target quantity formally, and casts
it in terms of estimable quantities. It has also been used by Imai et al. (2010) to examine
the robustness of empirical findings to the possible existence of unmeasured confounders.

The derivation of the Mediation Formula was facilitated by taking seriously the graphical-
counterfactual-structural symbiosis spawned by the surgical interpretation of counterfactuals
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(equation 6). In contrast, when the mediation problem is approached from an exclusivist
potential-outcome viewpoint, void of the structural guidance of equation (6), counterintuitive
definitions ensue, carrying the label “principal stratification” (Rubin, 2004) which are at
variance with common understanding of direct and indirect effects. For example, the direct
effect is definable only in units absent of indirect effects. This means that a grandfather
would be deemed to have no direct effect on his grandson’s behavior in families where he
has had some effect on the father. This precludes from the analysis all typical families, in
which a father and a grandfather have simultaneous, complementary influences on children’s
upbringing. In linear systems, to take an even sharper example, the direct effect would be
undefined whenever indirect paths exist from the cause to its effect. The emergence of such
paradoxical conclusions underscores the wisdom, if not necessity of a symbiotic analysis, in
which the counterfactual notation Yx(u) is governed by its structural definition, equation
(6).13

6 Conclusions

This chapter casts the methodology of structural equation modeling as a causal-inference
engine that takes qualitative causal assumptions, data and queries as inputs and produces
quantitative causal claims, conditional on the input assumptions, together with data-fitness
ratings to well-defined statistical tests.

We show that graphical encodings of the input assumption can also be used as efficient
mathematical tools for identifying testable implications, deciding query identification and
generating estimable expressions for causal and counterfactual expressions. We discussed the
logical equivalence of the structural and potential-outcome frameworks and demonstrated the
advantages of a symbiotic approach by offering a simple solution to the mediation problem
for models with categorical data.

An issue that was not discussed in this chapter is the perennial problem of external
validity (Shadish et al., 2002), namely, the conditions under which causal conclusions from a
study on one population can safely be modified and transported to another. This problem has
recently received a formal treatment using nonparametric SEM, and has led to algorithmic
criteria for deciding the legitimacy of the transfer as well as the way it ought to be executed
(Pearl and Bareinboim, 2011).

Some researchers would naturally prefer a methodology in which claims are less sensitive
to judgmental assumptions; unfortunately, no such methodology exists. The relationship
between assumptions and claims is a universal one—namely, for every set A of assumptions
(knowledge) there is a unique set of conclusions C that one can deduce from A, given the
data, regardless of the method used. The completeness results of Shpitser and Pearl (2006a)
imply that SEM operates at the boundary of this universal relationship; no method can do
better without strengthening the assumptions.

13Such symbiosis is now standard in epidemiology research (Robins, 2001; Petersen et al., 2006; Vander-
Weele and Robins, 2007; Hafeman and Schwartz, 2009; Joffe and Green, 2009; VanderWeele, 2009) and is
making its way slowly toward the social and behavioral sciences (Morgan and Winship, 2007; Imai et al.,
2010).
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